## Fluid Power Systems Fluid Connector Technology Best Practices

Ted Amling & Brian Smith September 2019 IADC ART BOP Controls Houston, TX











ENGINEERING YOUR SUCCESS.



## **Topics**

- Industry Standardization & Threaded Connections
- Fluid Power Flanges
- Industry Advancements
- Piping for Fluid Power Systems
  - Phastite for Pipe
- Line Sizing, Routing & Pitfalls
- Hose
- Takeaways





#### Fluid Power Connections 101





## **Industry Standardization for Fluid Connectors**



#### General Responsibilities & Goals:

- Safety/Reliability
- Performance Requirements
- Interchangeability
- Grow with users changing requirements
- Similar to IADC, combination of users & manufacturers on technical committees
- Hose, Fittings, Flanges, Transportation Fittings











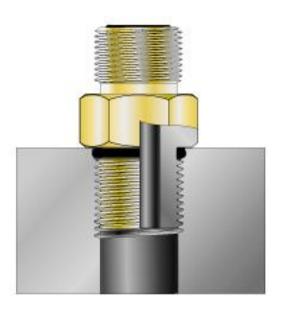
#### **SANCE**

#### **Product Selection Criteria:**

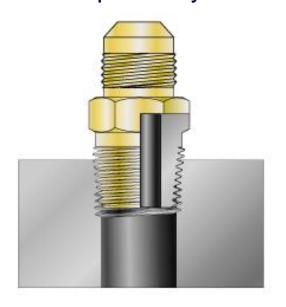
#### • <u>S.T.A.M.P.E.D:</u>

- **S**ize
- <u>T</u>emperature
- Application
- Media
- Pressure
- Environment
- <u>D</u>uty Cycle
- As well as.....
  - Sealing/Reliability/Robustness
  - Hose adaptability
  - Inch & metric tube adaptability
  - Installation, serviceability & maintenance
  - Acceptance / Availability / Standardization









#### **SANCE**

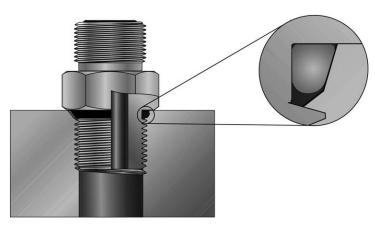
#### Parallel & Tapered Threaded Ports

- Parallel threads serve one function
  - holding/retaining the fitting under load
  - Preferred connection technology for fluid power systems



- Tapered threads serve two functions:
  - For holding in the fitting under load
  - Sealing (plus sealant)
  - Not preferred connection for fluid power systems

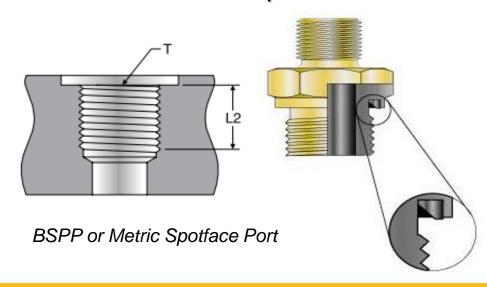







### **Threaded O-Ring Ports**

#### **Boss:**


- SAE J1926-1 / ISO 11926-1 (UN/UNF)
- ISO 6149-1 (Metric)
- Adjustability (shapes)
- common
- Standard o-rings

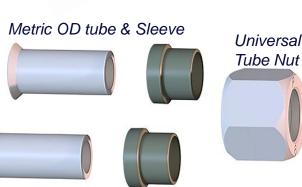


O-Ring Boss Port

#### **Boss:**

- ISO 9974 & 1179
- Metric & BSPP thread
- No adjustability need 2 fittings
- Seals on top of port or port "spotface"
- Often uses special seal






#### **Tube/Hose End: 37° Flare**

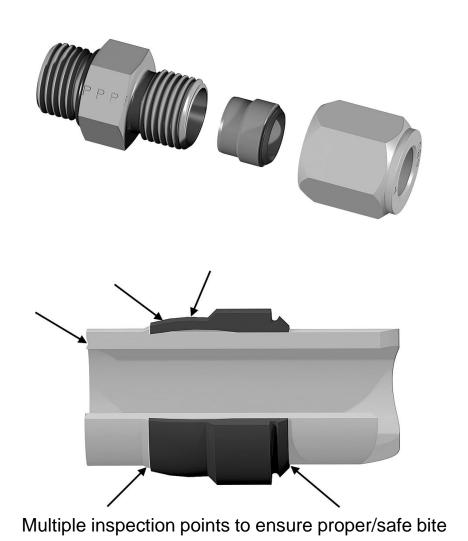
- 3 Piece Fitting (aka JIC)
- Common tube/hose adapter
  - Inch & metric tube
  - ½"/6mm 2"/42mm
- All metallic sealing
- Tighten by turns or torque
- ISO & SAE Standard
- Torque & vibration sensitive









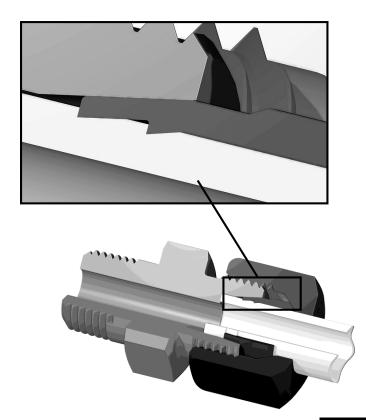

Hose Swivel Connection





#### **Tube End: SAE Bite Type/Flareless**

- Bite-type ferrule fitting
  - Inch tube only
  - 1/4" to 2" tube OD
- Visible/heavy bite
- Common industrial & energy segment fitting
- All metallic sealing
- Limited hose connections
- Sour gas limitations due to to 17-4 PH Ferrule








# Tube/Hose End: *Metric* 24° Bite-Type/Flareless

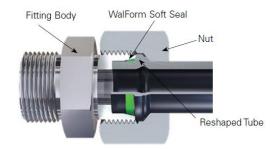
- Metric bite-type fitting
  - 3 series (LL, L, S)
  - 6mm to 42mm tube OD
- Metric tube only
- ISO 8434 & DIN 2353 standard
- Large breadth of product availability: fittings, weld nipples, banjo fittings, & hose adapter
- All metallic sealing





#### Tube/Hose End: Metric 24° Soft Seal

- ISO 8434 body/nut
- Separation of sealing & holding functions
- Modified tube attachment methods:
  - Ferrule/Bite-Ring adaptations to include elastomeric sealing
  - Tube forming directly on tube with elastomeric sealing (no ferrule)


Modified "Sealing" Ferrule solution: Courtesy: Parker EO-2



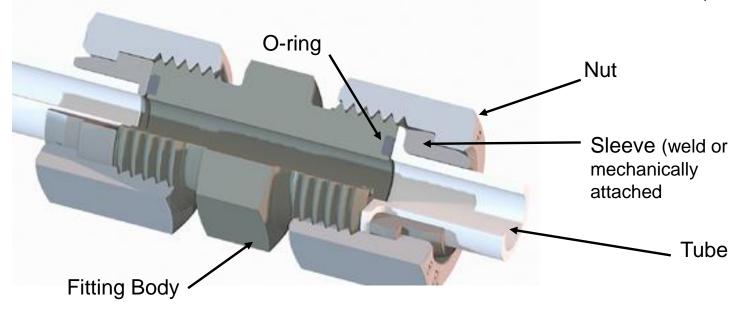




Cutaways of 3 fitting manufacturer's solutions (Parker, Voss, Eaton) for a formed tube (ferrule-less) option to metric bite type fitting





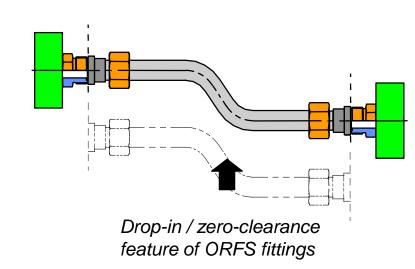



## Tube/Hose End: O-Ring Face Seal

- Flat face with a precision o-ring groove
- Tube/hose end has mating 90° surface
- SAE J1454/ISO 8434-3 standard
- Sealing: compressing o-ring between two flat surfaces
- Inch/Metric tube (similar to JIC/37)



Introduced in 1984, O-Ring Face Seal fittings (ORFS) solved many fitting leakage issues of the fluid power industry








## Tube/Hose End: O-Ring Face Seal

- Zero clearance fitting system
- High resistance to over-torque
- Higher temp seals available
  - Elastomeric up to 600°F / 315°C
  - Metallic up to 1200°F / 650°C
- Mechanical forming/flanging
- Weld fittings/glands





#### **SAMPLE**

# Tube/Hose End – Twin Ferrule Compression Fittings

- High-integrity fitting
- Very popular instrumentation fitting
- Defacto interchangeability, no industry standard
- Limited tooling required for pre-setting
- Broad range of configurations
- Wide temperature range
- Modest vibration/shock resistance
- Single ferrule fitting option/improvement



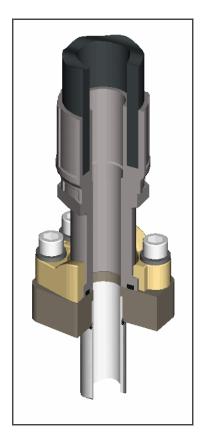


### **SAE/ISO Fluid Power Flanges**

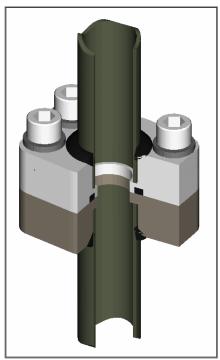


SAE 4-bolt socket weld companion flange set

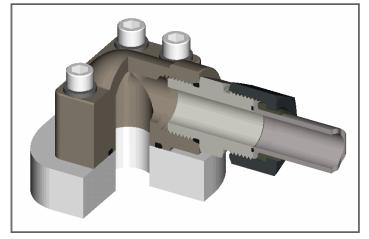



Note: ANSI B16.5 (150# -2500#) flanges are not recommended for fluid power/hydraulic service)

- Pipe, Tube & Hose Connections
- SAE and ISO standard flange (SAE J518 / ISO 6162 / ISO 6164
- Typically used in 1"-5" sizes
- Common platform in welded and non-welded piping systems
- SAE 4 Bolt: Two pressure classes (3k/6k)
- DIN/ISO 6164: Multiple pressure classes




## **Hydraulic Flange Versatility**






SAE Hydraulic Flange to **Hydraulic Hose** using split flanges



Companion FlangeTube to Tube orPipe to Pipe



Compact 90° Flange



Flange **Blocks/tees/manifolds** 



**Non-Welded** SAE Flange Piping





### Fluid Power Flanges







|                 | ISO 6162-1                   | ISO 6162-2            | ISO 6164                            |
|-----------------|------------------------------|-----------------------|-------------------------------------|
| Size (flange)   | 1/2" — 5"                    | 1/2" – 3"             | 1/2" – 5"<br>& larger (proprietary) |
| Flange pressure | <b>5000</b> psi<br>(350 bar) | 6000 psi<br>(420 bar) | 6000 psi<br>(up to 420 bar)         |

#### PRESSURE RATINGS OF SAE FLANGES

| CODE 61 SAE J518-1 / ISO 6162-1 |           |                         |      |                                              |                         |  |  |  |
|---------------------------------|-----------|-------------------------|------|----------------------------------------------|-------------------------|--|--|--|
|                                 |           | MAX WORKING<br>PRESSURE |      | GRADE 8 AND EQUIVALENT FASTENER TORQUE VALUE |                         |  |  |  |
| DASH SIZE                       | INCH SIZE | PSI                     | MPA  | SOCKET HEAD UNC<br>(LB-FT)                   | HEX HEAD UNC<br>(LB-FT) |  |  |  |
| -8                              | 1/2"      | 5000                    | 35   | 24                                           | 18                      |  |  |  |
| -12                             | 3/4"      | 5000                    | 35   | 44                                           | 33                      |  |  |  |
| -16                             | 1"        | 4600                    | 32   | 44                                           | 33                      |  |  |  |
| -20                             | 1_1/4"    | 4000                    | 28   | 68                                           | 52                      |  |  |  |
| -24                             | 1 1/2"    | 3000                    | 21   | 111                                          | 80                      |  |  |  |
| -32                             | 2"        | 3000                    | 21   | 111                                          | 80                      |  |  |  |
| -40                             | 2 1/2"    | 2500                    | 17.5 | 111                                          | 80                      |  |  |  |
| -48                             | 3"        | 2300                    | 16   | 218                                          | 160                     |  |  |  |
| -56                             | 3 1/2"    | 500                     | 3.5  | 218                                          | 160                     |  |  |  |
| -64                             | 4"        | 500                     | 3.5  | 218                                          | 160                     |  |  |  |
| -80                             | 5"        | 500                     | 3.5  | 218                                          | 160                     |  |  |  |

- UNC or Metric fasteners
- SHCS recommended
- SAE 3000 Pressure ratings
- Small flanges (SAE ½", ¾")
- ISO 6162-2 now includes 3"/DN80



Courtesy: Anchor Fluid Power

## **Hydraulic Flanges-Versatility**



#### **Mobile Land Drill Rig**



Marine/Shipbuilding



Industrial/ Processing



Offshore/\*Subsea



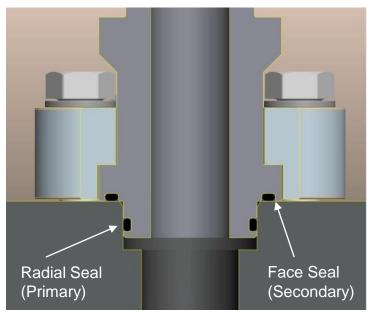




#### **Advancements in Connectors**

- Full SAE J1926/ISO 11926 port depth
- Higher temp o-rings available
  - O-Rings rated up to 600°F / 315°C
- Mechanical forming/flanging
- Higher Pressure Ratings for JIC/37
- Radial / Seal-Sub Flanges
- Non-Welded Hydraulic Piping






JIC Fittings with soft-seal nose/ w/ full J1926 port length (J1926-2)



### SealSub Flanges

- Subsea radial sealing flanges
  - SAE J518-2 footprint/bolting
  - Size range ½"-2"
  - Parker, DMIC, Anchor, DTL
  - Pipe Weld, Non-welded piping, Hose, Quick Disconnects
  - No industry standard, SAE reviewing



Cutaway of Seal-Sub SAE J518-2 Flange



Seal-sub Adapters & Non-Welded Piping





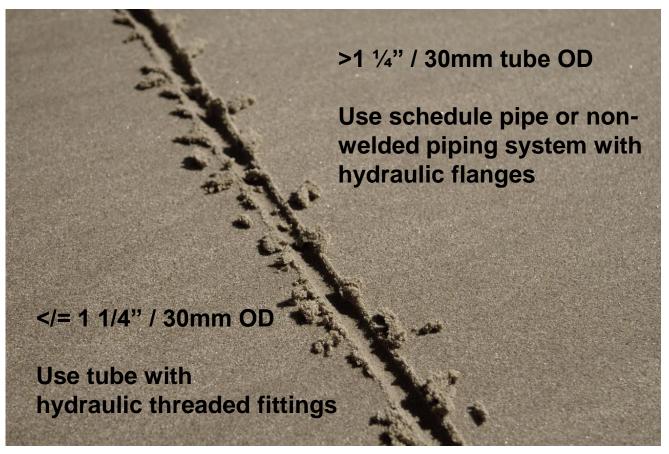


**SAMPLE** 








### **PIPING**

PIPING FOR FLUID POWER SERVICE





## Piping vs. Tube



In the past, threaded mechanically attached hydraulic fittings were considered reliable only up to ¾"-1" OD – frequently resulting in welded pipe systems being used as small as ½" NPS/schedule pipe





Butt-Weld Fittings & Pipe

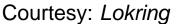






Crimp Style

Non-Welded Hydraulic Piping


- Pipe welding imparts challenges for hydraulic systems:
  - High fabrication time & labor
  - Contamination/cleanliness
  - Safety
  - Airborne Chromium/PEL
  - Inspection/NDE
  - Pipe pickling/passivation



Courtesy: Pyplok









Flare Flange Style





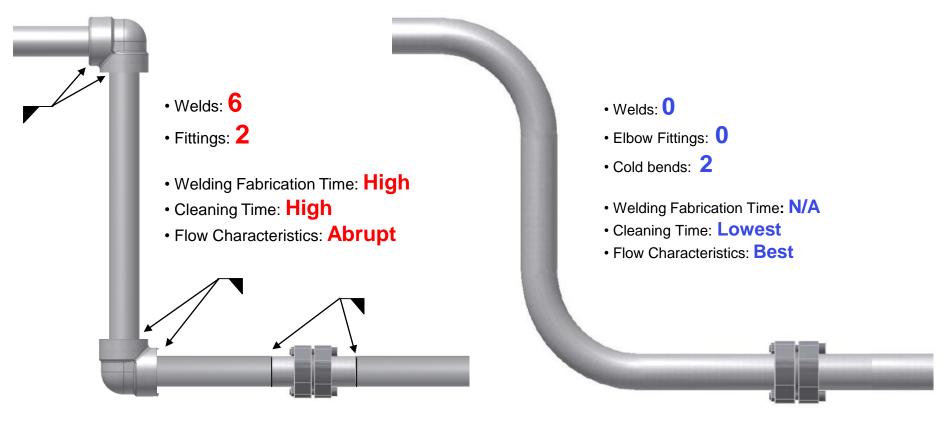
## Non-Welded Hydraulic Piping

#### **Typical Industry Approach:**

- Replacement of SW & BW piping systems
- Crimp, Swage, Groove, Flare
- System of seamless tubes/pipes, flanges, valves, manifolds & clamps
- Couplings and ISO 6162/6164 service break/flanges
- Combined with cold bending
- Combined with service provider
- Carbon steel and stainless Steel
- ASME B31.3
- Typically carry type approval such as DNV and/or ABS to Marine and Offshore Systems



Typical Flare Flange Connectivity of large bore fluid power piping. *Courtesy:* Parker Hannifin Parflange F37

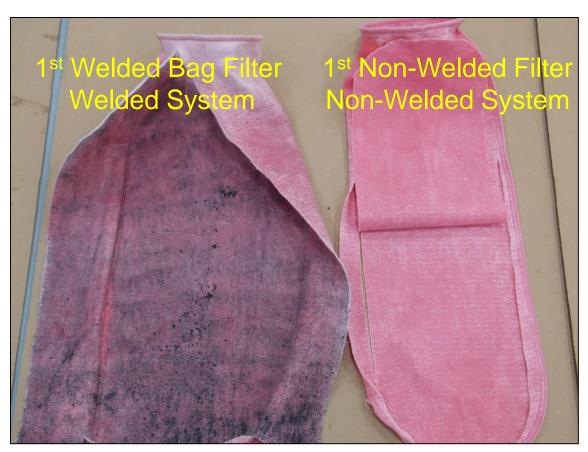



#### Non-Welded - Visual

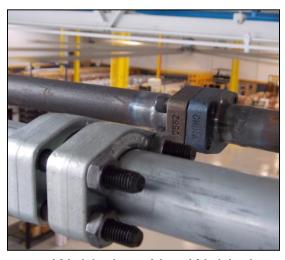


Non-Welded piping

#### Welded piping






## Pipe Cleanliness Comparison

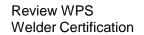
#### Post Welding, 1st Flushing Bag Comparison



1" piping, 350 ft / 100 meter run



Welded vs. Non Welded


"The experience of designers and users of hydraulic and lube oil systems has verified the following fact: over 85% of all system failures are a direct result of contamination!" —

The Handbook of Hydraulic Filtration



#### **Total Welding Comparison**









Welding Consumables and Equipment



Pipe Painting





Subcontract Pickling/Passivation













Certified Weld Inspection (CWI)



Independent NDT













Subsequent Weld Passes/Processes:











#### PHASTITE PIPING SYSTEM

NON-WELDED PERMANENT PIPING SYSTEM





#### **Phastite for Pipe**

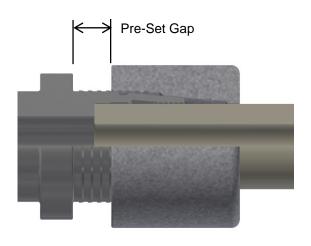
- Stainless steel, permanent, non-welded, axially swaged mechanically attached pipe fitting system
- Designed for rigors of O&G fluid power piping systems
- Currently qualified for common stainless steel hydraulic piping sizes <sup>3</sup>/<sub>4</sub>" - 2"
- One fitting series for a wide range of pipe schedules:
  - 40/STD, 80/XS, 160, & XXS
- Tolerance control built into fitting
  - Design accounts for liberal pipe tolerance



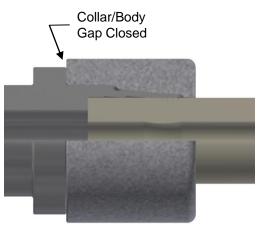


One Phastite fitting series for Sch 40/Std to Double Extra Heavy (XXS) pipe schedules

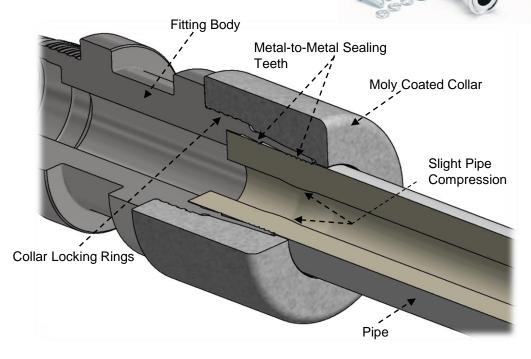



#### **Phastite: Top Level**

- For new construction, upgrades, & repair
- All stainless steel construction
  - 316 SS body with high strength duplex SS collar
  - No hidden elastomers, seals, or o-rings on pipe connection
- Pipe Fabrication from hours to minutes
  - No open flame / hot works permitting
  - No x-ray or certified weld inspection (CWI)
  - No airborne hex chromium exposure
  - Eliminates many pipe welding requirements
    - Gapping, tacking, cool/wait time, grinding, pickling/passivation, clean-up, visual/NDE







## **Phastite: Design**



Before Swage/Compression



After Swage/Compression









## Phastite: Ratings/Approvals

- 6000 psi dynamic/10,000 psi static operating pressure
  - 8k at 3:1 design factor
- Subsea depth of up to 15,000 ft
- Approvals:
  - ASME B31.1/B31.3 piping rules compliant
  - DNV-GL Technical Qualification (TQ)
     2013 (subsea, offshore, topside O&G)







TO Certificate for Phastite.



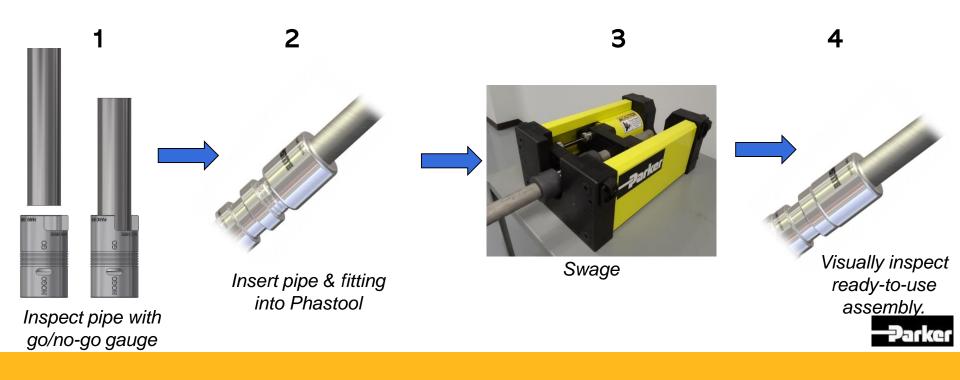


#### Phastite – Additional Considerations

- Zero heat application process
- Pre-assembled fittings with no loose parts
- A visual validation of a leak-tight connection (close the gap)
- Highly vibration tolerant
- Clean: requires no added lubrication
- 100% traceable (HCT) manufacturing
- Use with standard ASTM A312 S/S pipe
- Highly corrosion resistant
- Connects in minutes with hydraulic too



Phastite is fully integrated with sealsub radial seal service break flanges for optimum subsea performance & acceptance.




#### **Phastite Fabrication**

- Workbench mounted assembly tool
  - completes the Phastite connection in 1-2 minutes in 4 easy steps
  - 10x the speed of welding
- A greater labor impact is realized when combined with cold bending



**SAMPLE** 





### Phastite: Extensively Tested and Validated



**Bending Test** 





Hyperbaric Chamber Test





ASTM G44 Splash Zone Test





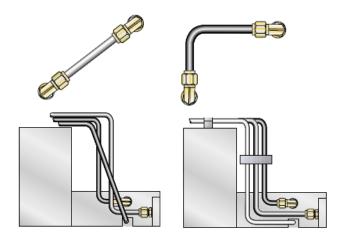
#### **Extensively Tested and Validated**



Burst Test to ASTM F1387



Vibration Test to ASTM F1387. Vibration Under Internal Pressure of 10,000 PSI for 250,000 Cycles




Axial Tension Test to ASTM F1387

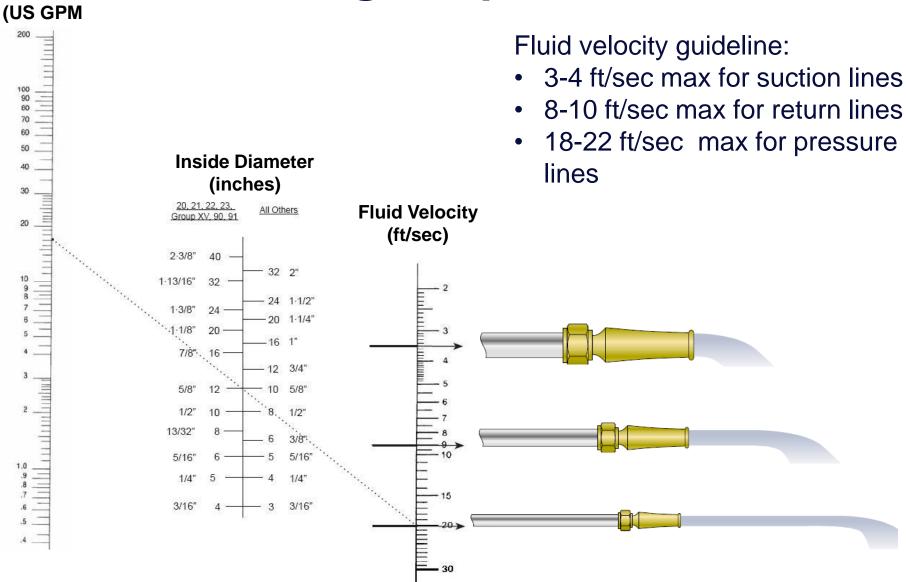











#### **ADDITIONAL GUIDELINES**

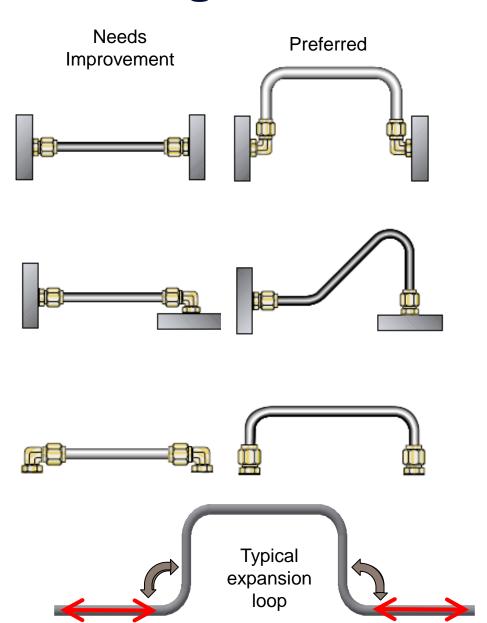
LINE SIZING, ROUTING, PITFALL AVOIDANCE

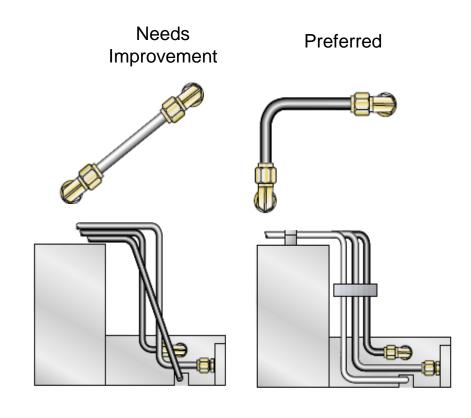


#### **SANCE**

# **Line Sizing – Pipe and Tube**




Note: Tube is sized by OD, Hose is Sized by ID. Important for Flowpath matching

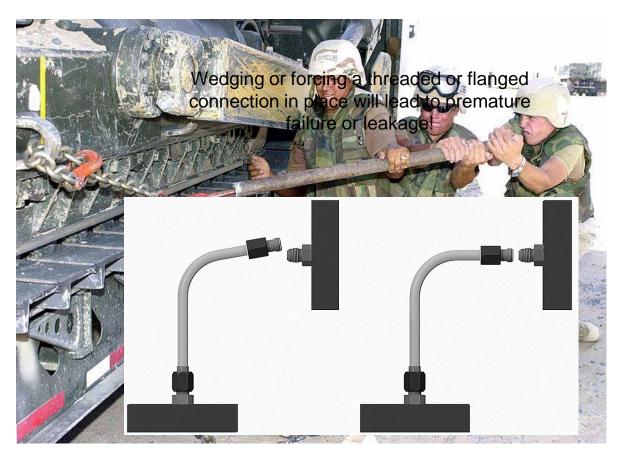

Q/Flow



# Routing








**Takeaways:** square and parallel, allow for expansion/contraction, PLAN for service breaks, PLAN for service/access to connections





#### Installation



If you have to use a cheater bar......



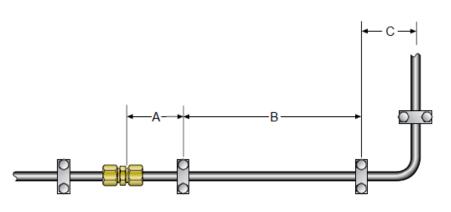
# Clamping

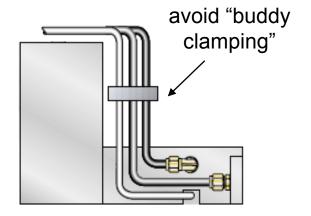




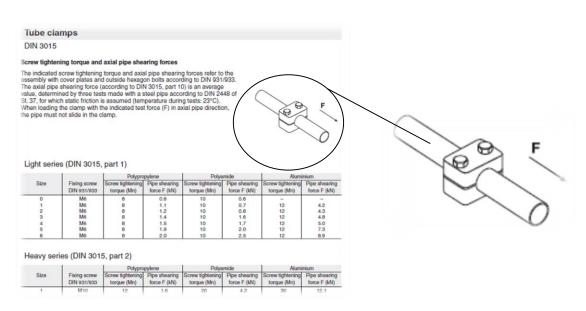
Several manufacturers provide industry standard (DIN 3015) clamps to the industry







Instrumentation tube clips




# **Clamping Guidelines**







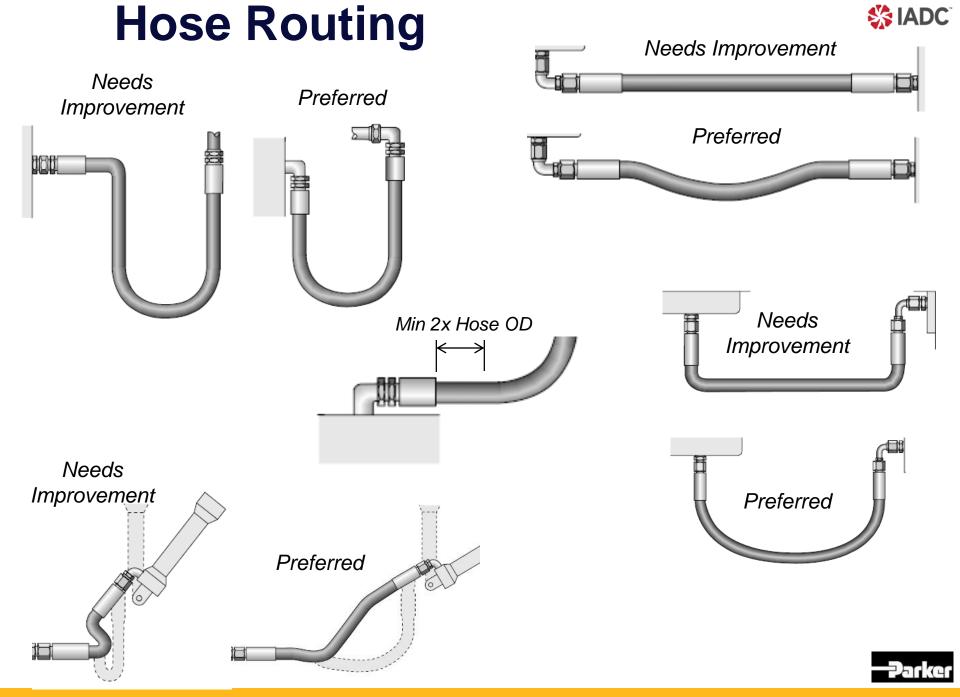
Published Spacing Guidelines



Published Load & Shear Force - Courtesy Stauff



-Parker


### **Hydraulic Hose Selection**



- What is the Application of the hose?
  - Equipment Type
  - Suction/Pressure/Return
- Where will the hose be used?
  - Temperature & corrosion
  - Minimum Bend Radius
  - Routing requirements: clamps/protection sleeves
  - Duty cycle
  - Abrasion (external)
  - Media (internal)
  - Fitting/adapter selection
  - Specific hose construction (spiral, braided, low volumetric expansion)







### **Hose Routing/Safety**

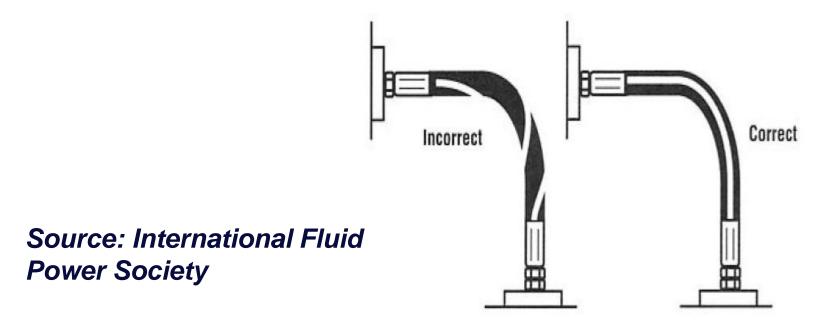
**SANCE** 

- Typical hydraulic hose expands in diameter & shortens in length when pressurized
- Thermoplastic hose for subsea service
- Follow velocity guidelines
- Flex connect at HPU and equipment takeover points when possible
- Hose is not an accumulator
- Don't intermix manufacturer's fittings/hose/crimping system



Photo courtesy: Connector Specialists

Hose Whip Restraints






#### **Avoid Hose Twist**

Use two wrenches to install a hose assembly. This will reduce chance of hose twist.

"a twist in a hose as little as 7-10% can result in a 90% loss of service life in the hose...." Use the layline of the hose as a guide to determine if there is hose twist







### **Summary**

Energy loss **Safety hazards** Environmental responsibilities Maintenance costs Lost Sales Warranty





# **QUESTIONS?**

