

Curriculum, Course Delivery Requirements, and Related Learning Objectives

Form WSP-02-WS-SN-EO Revision 0 17 August 2017

© IADC 2017

COPYRIGHT PROTECTED DOCUMENT

Contents

1.0 Ov	erview of Service Company Equipment Operator Snubbing Well Control	3
2.0 Cur	rriculum	5
2.1	Risk Awareness and Management	5
2.2	Well Control Principles & Calculations	6
2.3	Barriers	10
2.4	Influx Fundamentals	12
2.5	Gas Characteristics and Behavior	
2.6	Completion and Workover Fluids	13
2.7	General Overview of Surface and Subsurface Wellbore Equipment	15
2.8	Procedures	19
2.9	Snubbing Equipment	20
2.10	Well Kill in Preparation of Well Intervention	21
2.11	Special Situations	22
2.12	Organizing a Well Control Operation	24
2.13	Testing	
2.14	Government, Industry and Company Rules, Order and Policies	26
2.15	Ancillary Considerations	26

Overview of Service Company Equipment Operator Snubbing Well Control 1.0

This course curriculum is designed for service company equipment operators who are primarily responsible for the snubbing operational processes of well control. This curriculum identifies a body of knowledge and a set of job skills that can be used to provide well control training for snubbing operations personnel.

This curriculum incorporates Core Training Modules, Sub-Modules, Learning Topics, and Learning Objectives and Assessments.

Recommended Attendees: IADC recommends that this course is attended by equipment operators who are primarily responsible for the snubbing operational processes that involve well control. Examples of these positions or job roles are listed in the table below.

Company Type	Positions
	Supervisor
Snubbing Company Personnel	Engineer
	Snubbing Operator

Acceptable Delivery Methods:

Instructor-led training for the initial and repeat delivery of this course is required. Demonstration is required to be incorporated into the course content delivery. See the relevant cross-reference document regarding content delivery requirements for specific learning objectives.

To the maximum extent possible, use scenarios to bring attention to specific topics. IADC also requires a "blended" approach to (multiple strategies for) content delivery and a variety of techniques that appeal to different types of learners (e.g., visual, auditory, kinesthetic). These strategies will also help engage trainees in the learning process and will help improve learning and retention.

Minimum Course Length: Thirty-two (32) classroom hours are required for teaching the Snubbing curriculum. Course length excludes the knowledge assessment time (3.5 hours).

Course Curriculum Notes: The curriculum that follows includes five components: Training Modules, Sub-Modules, Learning Topics, AIM, and Learning Objectives and Assessment Guidelines.

<u>AIM</u>: The AIM letters indicate the level of knowledge and skills required at the job level:

A = Awareness of Learning Topic

I = Implements Learning Topic at this job level; needs an increased level of knowledge because they may have to take action of some task related to the topic.

M = Mastery of Learning Topics at this job level; needs a full knowledge because they have to take action, perhaps unsupervised, of some task related to the topic.

<u>Learning Topics</u>: This section provides guidance for instructors on what the trainee should learn.

<u>Learning Objectives and Assessment Guidelines</u>: This section defines what trainees should be able to do at the conclusion of the training and provides some examples of how to meet the objectives.

Assessment Notes:

Questions on the Knowledge Assessment will be graded as a cumulative score. To pass the course, the trainee must earn at least a 70% score. There is no requirement for skills assessment.

2.0 Curriculum

2.1 Risk Awareness and Management

Cub Bandulas	0.10.0	Learning Topics	Learning Objectives and Assessment Guidelines
Sub-Modules	AIM	The instructor will impart knowledge on:	The attendee will be able to:
Potential Impacts of a	А	Risks associated with completion and well	Describe potential risks of pore pressure prediction being incorrect and resulting in well control risk (e.g., completing a new reservoir).
Well Control Event	I	intervention operations	Identify potential well control problems that could occur during completion and well intervention operations.
Live/Dead Well	М	Differences between 'live' and 'dead' well	Define 'live' well.
Live/ Deau vveii	М	Differences between live and dead well	Define 'dead' well.
Risk Management	1	Systematic risk management	List the four principles of systematic risk management (i.e., identify, quantify, mitigate and control risk).
Pre-job Communication	ı	Pre-job communications	Explain the importance of communicating operational plan details, risks, and responsibilities.
	I		Explain the importance of a good handover for tour and hitch change.
Handover for Tour and		Handover for Tour and Hitch change to	Identify key components that need to be addressed during a handover
Hitch Change	I	minimize risks	for tour and hitch changes (e.g., current well status, barrier envelope, and communication of responsibilities).
	А	Safety Margin Risks	Describe the criteria used to develop a safety margin.
Safety Margin Selection	A	a. Safety margins in Well Kill Operationsb. Dangers of using minimal safety margins	Explain the dangers of using minimal safety margins during a well kill (i.e., safety margins applied to tubular integrity, casing integrity, wellhead rating).
Bridging Documents	А	Purpose and Importance of Bridging Documents	Explain the purpose and importance of a well control bridging document (i.e., to assure all parties have the same information; to resolve well control issues between different parties (which well control practices will be followed); to handle specific issues in relation to a particular well/environment or legislative regime).

Module Name: 2.1 Risk Awareness and Management				
Sub-Modules	AIM	Learning Topics	Learning Objectives and Assessment Guidelines	
Sub-Modules	Alivi	The instructor will impart knowledge on:	The attendee will be able to:	
Emergency Procedures	Α	Purpose and Importance of Establishing and	Determine situations that require emergency procedures be activated and action(s) to secure the well (if applicable) (i.e., an uncontrolled BOP leak; 'broaching' at surface; potential vessel collision; bad weather; drive-off; toxic gas; fire).	
	А	Following Emergency Procedures for Rig BOP	Explain when a company should initiate the emergency action plan and assure crew members are aware of their roles and responsibilities for evacuation.	
	I		Define Maximum Allowable Working Pressure (MAWP).	
Pressure Control	I	Equipment Requirements	Identify the working pressure of a system based on lowest working pressure component (e.g., schematic or description).	
Equipment/Barrier Envelope Considerations	I	Installation of rings, flanges and connections	Describe characteristics and best practice for installing a ring gasket.	
Livelope Considerations	Α	Load Bearing Considerations	Identify considerations when determining if a wellhead or tree bending integrity stress analysis is required.	

2.2 Well Control Principles & Calculations

Module Name: 2.2 Well	Module Name: 2.2 Well Control Principles & Calculations		
Sub-Modules	AIM	Learning Topics	Learning Objectives and Assessment Guidelines
Sub-Modules	Allvi	The instructor will impart knowledge on:	The attendee will be able to:
	М	Pressure	Define pressure.
	М	Types of pressure	Define hydrostatic pressure.
	М	a. Hydrostatic pressure	Calculate hydrostatic pressure.
	М	b. Applied Pressures	Explain the effects of fluid level change on hydrostatic pressure.
Pressure Fundamentals	M	 Surface pressure 	Identify the different types of applied pressures.
	M	a. SITP	Explain shut-in pressures.
	M	b. Annulus Pressure	Explain equivalent circulating densities (ECD).
	M	2. Pump Pressure	Explain the effects of trapped pressure (e.g., above and below the packer
	IVI	3. ECDs (Equivalent Circulating	or plug).
	M	Densities)	Explain the differences between swab and surge.

Sub Madulas	ALDA	Learning Topics	Learning Objectives and Assessment Guidelines
Sub-Modules	AIM	The instructor will impart knowledge on:	The attendee will be able to:
	М	4. Trapped Pressure	Calculate formation pressure.
	М	5. Swab/surge	Discuss situations where differential pressure exists in the wellbore (e
	IVI	c. Formation pressure	across sliding sleeve; perforating; above/below packers; wireline plug
	М	d. Differential pressure	Define fracture pressure.
	М	e. Fracture pressure	Define Bottomhole pressure (to include applied pressure).
	М	f. Bottomhole pressure	Explain the difference between overbalanced and underbalanced
	IVI	1. Balanced	pressure.
	М	2. Underbalanced	Calculate equivalent fluid weight equal to formation pressure (kill fluid
	М	3. Overbalanced	Calculate gradient for different density of liquid and gases.
	М		Calculate well gradient from formation pressure and surface pressure
	N /		Calculate bottomhole pressure with at least one well bore with two
	M		different densities and surface pressure.
	М	Maximum Anticipated Surface Pressure	Define MASP (reference WellSharp Definitions document).
	171	(MASP)	Define WASI (reference Weilsharp Definitions document).
	M	Forces from Applied Pressure	Calculate the effective force with a given pressure over a certain area
	M	Torces from Applica Fressure	Calculate net force effects due to trapped pressure.
	M	Equivalent circulating density	Define equivalent fluid density.
	М	a. Definition	Explain circulating frictional pressure losses and effects on pressure a
	141	b. Frictional pressure loss effects on	equivalent circulating density for forward and reverse circulation.
		downhole pressure	
	M	c. Surface pressure effects	Calculate equivalent circulating fluid density.
		d. U-tube principles	
	M	Kill Mud Weight (Equivalent static fluid	Define kill mud weight (equivalent static fluid density).
		density)	
	М	a. Definition	Calculate kill mud weight (equivalent static fluid density) with
		b. Pressures expressed as an equivalent	temperature effects.
		fluid weight	Developed and advantage of the title in
	M	U-tube principles	Demonstrate understanding of the U-tube concept.
	M	Buoyancy	Define buoyancy.
	M	a. Pipe light	Calculate buoyancy effects to string weight.

WSP-02-WS-SN-EO Revision 0 Page 7 of 26 Created: 17 August 2017

Module Name: 2.2 Well Control Principles & Calculations			
Sub-Modules	0104	Learning Topics	Learning Objectives and Assessment Guidelines
Sub-iviodules	AIM	The instructor will impart knowledge on:	The attendee will be able to:
	М	b. Pipe heavy	Calculate the balance point to transition from snubbing to stripping
	IVI	c. Balance Point	operations while going in hole.
	ı		Describe forces that must be overcome to push/pull workstring into/out
	'		of a pressured well.
	M		Calculate tubing volumes using given data.
	M		Calculate strokes using given data.
	М	Volume/Displacement calculations	Calculate displacement volumes using given data.
	M		Calculate annular volumes using given data.
	М		Calculate usable volume of fluid in a pit/tank.
	M		Calculate the snub force (tubing body and tubing collar/pipe upset).
Calculations	M		Calculate the effective buoyancy weight per foot in the hole.
	M	Pre-job calculations	Calculate balance point (with and without fluid in the string).
	Α	- Fre-job calculations	Calculate the stripper drag force.
	M	M	Explain the importance of accounting for the stripper drag in the
	IVI		snubbing calculations (i.e., accepted industry standard of 30%).
	ı	Snub force as a result of cross sectional area	Describe how changes in snubbing cross sectional area affects snub force
	'	Shab force as a result of cross sectional area	(e.g., BHA vs. tubing body).
			Explain why applied casing pressure is needed (e.g., prevent packers from
	Α		unseating, seal units from being pumped out of Polished Bore Receptacle
Principles		Tubing Collapse and Casing Burst	(PBRs), basis point for monitoring, limit differential pressure, prevent
· · · · · · · · · · · · · · · · · · ·		- Tabiling collapse and cashing barse	failures).
	Α		Explain why applied casing pressure can lead to tubing collapse or casing
			burst.
		Well configuration	Demonstrate how to document pre-recorded data significant to well
Pre-recorded Well	l	a. Top and bottom of perforations	control situations (e.g., perforation interval, packer locations, tubing
Information		b. Packer/Tool locations	strengths, safe working pressures).
	1	c. Tubing dimensions, lengths and	Given a well and equipment scenario, determine pump rates to circulate,
	•	strengths	pump, or kill the well.

Module Name: 2.2 Well (Module Name: 2.2 Well Control Principles & Calculations			
Sub-Modules	AIM	Learning Topics	Learning Objectives and Assessment Guidelines	
Sub-Modules	Alivi	The instructor will impart knowledge on:	The attendee will be able to:	
			Demonstrate how to document the wellbore profile including depths	
	I		(MD/TVD), lengths, strengths, capacities, displacements, and safe working	
			pressures.	
	l	Maximum safe pressures	Calculate safe working pressure for casing for a given safety factor.	
	I	a. Casing burst rating	Calculate casing pressure limit to prevent tubing collapse.	
	I	b. Tubing collapse and burst ratings	Calculate casing pressure limit to prevent casing burst.	
	ı	Fluid density(ies) in well	Calculate the equivalent fluid gradient for given formation and surface	
	•	Traid defisity (les) in well	pressures, true vertical depth (TVD).	
	ı		Explain the purpose of functioning the casing valve prior to Intervention	
	•	Wellhead/Well Control Stack/Christmas tree valves	operations.	
	I		Explain the purpose of functioning the tree wing valve prior to	
Secured Well Conditions			Intervention operations.	
	Α		Explain the importance of a procedural lock-out on a remote actuated	
			tree valve.	
	I		Explain the importance of closing the tree master valve last.	
	I		Explain the consequences of exceeding the tubing integrity due to	
Coulding / Budding		Output and friends for and	frictional forces (i.e., buckling pipe, parting pipe, necking/ballooning).	
Snubbing/Buckling	I	Overcoming frictional forces	Identify factors that contribute to upward forces.	
	1 N.4		Identify factors that contribute to downward forces.	
	M	W 110 - 10 - C C	Calculate anticipated forces required for snubbing.	
Pre-job Considerations	I	Well Control Process Safety preparation	Identify information required to successfully execute snubbing operation.	
	Α		Recognize how tensile strength of the tubular is reduced when subjected	
			to differential pressure (greater pressure outside the tubing than inside).	
Reduction of Tensile	ı	Conditions causing collapse or parting of tubulars	Identify how to mitigate the risk of collapsed tubing due to excessive	
under Collapse Loading	1		tensile load in relation to differential pressure.	
			Identify pressure differential conditions and tubular properties, which	
			could lead to parting.	
Reduction of Pipe	ı	Conditions causing twist-off of pipe	Describe how well pressure and string weight affects the torque limit on	
Strength		0	the pipe.	

WSP-02-WS-SN-EO Revision 0

Page 9 of 26 Created: 17 August 2017

2.3 Barriers

Module Name: 2.3 Barrie	rs		
Sub-Modules	AIM	Learning Topics	Learning Objectives and Assessment Guidelines
Sub-Modules	Allvi	The instructor will impart knowledge on:	The attendee will be able to:
	М		Define the term "barrier" (reference WellSharp Definitions document).
	М	Barriers and barrier envelope	Define the term "barrier envelope" (reference WellSharp Definitions document).
Philosophy and Operation	M		List the requirements for a component to be considered a barrier (i.e., once it is tested; when it is in contact with well fluids).
of Barrier Systems	М	Purpose of barriers during completions and well interventions	Explain how barriers are used to maintain well integrity for completions and well interventions.
	М	Operational Shut-in Hierarchy	Discuss the hierarchy of operations for Pressure Control Equipment (PCE).
	М		Explain the action to take upon detection of a failed primary barrier.
	М	Barrier Hierarchy	Explain the action to take upon detection of a failed secondary barrier.
	М		Explain the action to take upon detection of a failed emergency closure.
	М	Mechanical barriers	Define mechanical barrier.
	М		List examples of mechanical barriers.
	M		Explain the validation needed to be a mechanical barrier.
	M	Fluid barriers	Define fluid barrier.
Types of Barriers	М		Explain what is required for a fluid to be considered a barrier (i.e.,
			continuously observe the height and the ability to add fluid).
	M		List the types of fluid barriers.
	М		Explain the limitations of fluid barriers (e.g., It is only a barrier for a
	141		certain period of time after circulation stops).
	M	Primary and Secondary Barriers and	Explain what primary barriers are.
	M	Emergency Closure	Explain what secondary barriers are.
Levels of Barriers	M	Liner Berrey Glosure	Explain what emergency closures are.
LCVCIS OF DUTTICIS		Minimum number of barriers required for	Explain why a minimum number of barriers are required for safe
	M	safe operations	operations. (Refer to industry recommendations for minimum number of barriers to be in place for specific operations).
Barrier Management	М	Testing mechanical barriers	Explain positive pressure and negative/inflow pressure barrier tests (e.g., increase differential pressure across a barrier in either direction).

WSP-02-WS-SN-EO Revision 0

Page 10 of 26 Created: 17 August 2017

dule Name: 2.3 Bar	riers		
Sub-Modules	AIM	Learning Topics	Learning Objectives and Assessment Guidelines
Jub Modules	Allvi	The instructor will impart knowledge on:	The attendee will be able to:
	I		Identify the reference sources for mechanical barrier test criteria (e.g., the well program, operations manuals, industry standards, technical specifications from equipment manufacturers, integrity testing, and regulatory agency).
	М		Explain the importance of documenting mechanical barrier testing.
	М		Explain the importance of the test pressure and time period to validate mechanical barrier.
	М		Explain the action to take if there is a test failure of a mechanical well barrier/element (i.e., retest, reinstall, or install additional barrier).
	Α		Explain the importance of monitoring the fluid volume at surface (e.g., open top tanks).
	M		Identify the reference sources for fluid barrier test criteria (e.g., the words program, industry standards, and technical specifications from comparmanufacturers).
	М	Validating fluid barriers	Explain the importance of fluid density measurements as it applies to design.
	Α	_	Identify conditions that would lead to settling of solids in the fluid.
	М		Explain how crystallization affects a fluid barrier (e.g., changes fluid density).
	M		Explain the action to take if there is a test failure of a fluid barrier/element (e.g., shut-in well, change out fluid, install mechanical barrier).
	M		Explain how a failed primary barrier can be detected (e.g., from the flo from the well; through losses to the well; an increase in surface pressu when shut in).
	М	Detecting a failed barrier	Explain how a failed secondary barrier can be detected (e.g., pressure loss; detectable leaks at surface).
	М		Explain how a failed emergency closure can be detected (e.g., blowout uncontrolled flow).

 WSP-02-WS-SN-EO
 Page 11 of 26

 Revision 0
 © Copyright IADC 2017
 Created: 17 August 2017

Module Name: 2.3 Barrie	ers		
Sub-Modules	AIM	Learning Topics	Learning Objectives and Assessment Guidelines
Sub-iviodules	Alivi	The instructor will impart knowledge on:	The attendee will be able to:
PCE Equipment	I	Hoses and Connections	Identify different types of connections (e.g., NPT vs high pressure fitting, high pressure swivel joint-other operations).

2.4 Influx Fundamentals

Module Name: 2.4 Influ	Module Name: 2.4 Influx Fundamentals		
Sub-Modules	AIM	Learning Topics	Learning Objectives and Assessment Guidelines
Sub-iviodules	Alivi	The instructor will impart knowledge on:	The attendee will be able to:
	I		Explain why reduction in hydrostatic pressures can cause an influx.
Influx	1	Causes of an influx	Explain why failure to keep hole full can cause an influx.
IIIIux	1	Causes of all lillux	Explain why swabbing the well can cause an influx.
	I		Explain why lost circulation can cause an influx.
	I	Possible Indicators of an Unplanned Influx	Identify possible indicators of an influx (e.g., decrease in pump pressure/increase in pump rate, volume displacement change during tubular movement, change in surface pressures, changes in string weight, oil or gas shows during circulation, and changes in fluid density).
Influx Detection	1		Identify the necessity of timely response to one or more possible influx indicators.
	M		Identify or describe potential consequences of improper or untimely response to influx indicators (e.g., extreme changes in operating pressures, possible release of gas, pollution, potential for fire, loss of life, equipment resources).

2.5 Gas Characteristics and Behavior

Module Name: 2.5 Gas Characteristics and Behavior				
Sub-Modules	AIM	Learning Topics	Learning Objectives and Assessment Guidelines	
	Allvi	The instructor will impart knowledge on:	The attendee will be able to:	
Pressure and Volume Relationship (Boyles Law)	M	Relationship between pressure and volume of a gas in the wellbore	Explain the relationship between gas pressure and gas volume (e.g., the Boyle's Law concept to explain the pressure/volume relationship with most expansion close to surface).	
	М		Calculate new volume or pressure from original volume or pressure change using Boyle's Law.	

2.6 Completion and Workover Fluids

Module Name: 2.6 Completion and Workover Fluids				
Sub-Modules	AIM	Learning Topics	Learning Objectives and Assessment Guidelines	
Sub-iviodules	Alivi	The instructor will impart knowledge on:	The attendee will be able to:	
	I	Purpose of fluid	Describe the purpose and characteristics of fluids that make them suitable for workover and completions (e.g., compatibility with the zone; pressure control).	
	1	Purpose of packer fluid	Describe the purpose of packer fluid in a completion.	
	I		Explain why fluid loss control is an important characteristic of workover/completion fluid.	
Completion and	I	Fluid loss	Explain why fluid loss control is difficult to achieve when using workover/completion fluids.	
Workover Fluids	I		Explain the types and methods used in fluid loss control (e.g., pills, multiple fluids, plugs).	
	А	Formation damage	Explain why formation damage is an important consideration of workover/completion fluid.	
	А	Corrosion	Explain how corrosion is inhibited through the use of workover/completion fluids.	
	А	Environmental concerns	Describe how the composition of the workover/completion fluid could affect the environment.	

Sub-Modules	A 10.4	Learning Topics	Learning Objectives and Assessment Guidelines
	AIM	The instructor will impart knowledge on:	The attendee will be able to:
	А		Explain the importance of managing the returns and assessing possible well fluids prior to discharge.
	I	Rheology of Fluids	Describe properties required to enable workover/completion fluids carrying capacity and their effect.
	I		Explain the effect of pump rates on fluid carrying capacity.
Liquids	I	Brine requirements	Explain why a different brine combination may be needed based on density requirements.
	I	Density	Define density.
	I	Viscosity	Define viscosity.
	I	·	Define pH.
	I	рН	Describe pH in relationship to density and viscosity (e.g., direct effect on viscosity, no effect on density).
Fluid Properties	I	Crystallization point	Define the low temperature point of brine and describe how it is related to crystallization (e.g., ambient temperature to downhole temperature, density).
	I	Saturation	Describe brine saturation and how it relates to crystallization and maximum fluid weight.
	I	Temperature and pressure	Discuss the effects of temperature on brine weight (e.g., surface temperature vs downhole temperature).
	I	Viscosity	Define the relationship between viscosity and frictional pressure losses.
	I	Flow rates	Describe frictional pressure loss changes due to flow rate.
	I	Frictional pressure losses	Describe frictional pressure loss changes due to downhole restrictions.
Fluid Flow Behavior	I	Fluid flowpath geometry (wellbore/coiled tubing)	Describe frictional pressure loss changes due to well geometry.
	I	Flowpath restrictions (wellbore, downhole tools)	Describe frictional pressure loss changes due to downhole tools.
Eluid Types	А	Oil based fluids	Describe the applications where oil based fluids may be used.
Fluid Types	Α	Base oil	Identify an application where base oil is used in a completion.

Page 14 of 26 WSP-02-WS-SN-EO Revision 0 Created: 17 August 2017 © Copyright IADC 2017

Module Name: 2.6 Completion and Workover Fluids				
Sub-Modules	AIM	Learning Topics	Learning Objectives and Assessment Guidelines	
Sub-ividuales	Alivi	The instructor will impart knowledge on:	The attendee will be able to:	
	А	Water based fluids	Identify acceptable types of water based fluids that may be used in a workover/completion fluid (e.g., clear brines, muds, salt saturated brines, gels/gel pills, stimulation fluids – acids, calcium carbonate systems, packer fluids).	
	А	Gases	Identify acceptable types of gases that may be used in a workover/completion fluid (e.g., CO_2 , N_2).	
Measuring Techniques	Α		Explain how fluid density is measured (i.e., use of mud balance).	
	Α	Fluid properties	Identify the conditions where a pressurized mud balance may be used.	
	Α		Explain how fluid viscosity is measured (i.e., Marsh funnel).	

2.7 General Overview of Surface and Subsurface Wellbore Equipment

Module Name: 2.7 General Overview of Surface and Subsurface Wellbore Equipment			
Sub-Modules	AIDA	Learning Topics	Learning Objectives and Assessment Guidelines
Sub-iviodules	AIM	The instructor will impart knowledge on:	The attendee will be able to:
	I	Components	Identify the key Christmas tree components.
Christmas Tree	М	Purpose and Function of the Christmas Tree	Explain the function of the Christmas Tree and how they work with particular emphasis on: Master, swab and flow line valves The Surface Safety Valve (SSV) Control line pressure versus tubing pressure
Blowout Preventer Stacks	М	Barrier Elements a. Annular Type Blowout Preventer	Identify barrier elements used in snubbing operations.
	М	(BOP) b. Ram Type BOP	Explain advantages and disadvantages of each type of equipment used in snubbing operations as a barrier element.

Module Name: 2.7 Gene	eral Overv	view of Surface and Subsurface Wellbore Eq	uipment
Sub-Modules	AIM	Learning Topics	Learning Objectives and Assessment Guidelines
Sub-Modules	Allvi	The instructor will impart knowledge on:	The attendee will be able to:
	I	 Strippers (see sub-module lubricator/stripper assemblies for more learning objectives) Pipe/Multiple string Blind Blind/Shear Shear Slip Variable bore Valves 	Identify criteria used in the selection of the barrier element for different operating environments (e.g., pressure, safety margins, operational objectives of the job, operating limits of the elements).
	I	Operating Environment	Verify operating limits of BOP equipment (e.g., pressure and space out limits).
	I	Configurations	Identify flow path(s) used in well control operations.
	I	Configurations	Identify locations for choke and kill line valves.
	M	Stripping rams (HWO)	Explain the functionality and limitations of stripping rams (HWO).
	I	Tapered strings	Identify proper ram selection for tapered strings.
Auxiliary Well Control	I	Downhole check valves	Explain the necessity of redundancy regarding internal application of downhole check valves to prevent flow up the string (i.e., where or why are we redundant).
Equipment	I	Full open safety valve (FOSV) a. Floor stabbing valves	Describe the function and use of the full open safety valve.
	I	b. Tubing safety valves	Identify the location of the FOSV when not in use.
	М		Identify reasons and procedures for an accumulator drawdown test.
	М		Identify the accumulator drawdown test frequency as per API STD 53.
	M	Accumulator Drawdown test	Calculate the usable fluid volume for a given BOP stack applying a safety factor.
Accumulators	M	Accumulator Drawdown test	Describe the accumulator system function.
	М		Define pre-charge pressure relative to usable fluid volume test.
	M		Define minimum system pressure relative to accumulator drawdown test

WSP-02-WS-SN-EO Revision 0

Page 16 of 26 Created: 17 August 2017

Module Name: 2.7 General Overview of Surface and Subsurface Wellbore Equipment			
Sub-Modules	AIM	Learning Topics	Learning Objectives and Assessment Guidelines
Jub Modules	AllVi	The instructor will impart knowledge on:	The attendee will be able to:
	М		Define normal regulated operating pressure relative to accumulator
			drawdown test.
	M		Define maximum system pressure relative to accumulator drawdown test.
			List conditions which would cause an adjustment to the regulated annular
	I		operating pressure (e.g., change in OD, change in well pressure, and worn elements).
	M	Closing time test	Identify the reasons and procedures for a closing time test, per API STD 53.
	I		Explain the function of the manifold pressure regulator and bypass valve.
	ı	Adjustment of operating pressure a. Manifold pressure regulator b. Annular pressure regulator	Explain the function of the annular pressure regulator.
			Describe the accumulator system functions, including an explanation of
	l		the consequences of losing nitrogen pre-charge pressure.
	I		List the reasons for adjusting regulated annular operating pressure.
	М	Operating purpose of main and remote control panels	Describe the purpose of main and remote control panels.
	М	Operating functions of the remote BOP control panel	Describe how to operate the BOP from the remote control panels.
	M		Describe the consequences of lost rig air used for functioning the remote BOP control panel.
	I	Manual adjustable chokes	Define the function of manual adjustable choke.
Chokes and Choke	I	Remote adjustable chokes	Define the function of remote adjustable choke.
Manifolds	I	nemote adjustable chokes	Explain how back-up system(s) to remotely operate chokes work.
	1	Choke manifolds	Define the function of choke manifold.
Fluid Measuring	I	Pump stroke counter	Define the function of pump stroke counter in relation to calculating volumetric rate.
Workstring and	I	Tubular Integrity	Identify tubing ratings (e.g., burst, collapse, torsion, tensile, buckling, connection type).
Production Tubing	1	Operational Hazards	Identify possible tubing failure (e.g., washouts, corrosion, H₂S).

WSP-02-WS-SN-EO Revision 0

Page 17 of 26 Created: 17 August 2017

Module Name: 2.7 Gene	Module Name: 2.7 General Overview of Surface and Subsurface Wellbore Equipment			
Sub-Modules	AIM	Learning Topics	Learning Objectives and Assessment Guidelines	
Sub-Modules	Allvi	The instructor will impart knowledge on:	The attendee will be able to:	
	I		Identify IBOP options and safety considerations for each.	
	Α	Inside BOPs (IBOPs)	Describe the function and use of IBOP.	
	I		Identify the location and position of the IBOP when not in use.	
	I	Tubing hanger	Describe the function of tubing hangers: Seal off annulus Support tubing weight Provide locking or threaded profile for Tubing Hanger Profile (TBH)	
	I	Surface Controlled Sub-Surface Safety Valve (SCSSV)	Explain the functionality and how a failure of a Surface controlled subsurface safety valve (SCSSV) can contribute to a well control incident.	
	1		Recognize and describe the advantages/disadvantages of retrieving methods for surface controlled sub-surface safety valves (SCSSVs).	
	I		Explain how a failure of the lock-out device in a surface controlled Sub- Surface Safety Valve (SCSSV) can result in a well control incident.	
Completion Equipment	ı	Sub-surface safety valves (SSSVs)	Describe the difference between the sub-surface safety valves (SSSV) and the surface controlled sub-surface safety valve (SCSSV).	
	ı	Landing nipples and tubing plugs	Describe the primary function, types, restrictions, applications and positioning of landing nipples and tubing plugs.	
	I		Describe the primary function and design of the sliding sleeves as communication devices (e.g., production, circulation).	
	I	Sliding sleeves and ported nipples	Describe the primary function and design of the ported nipples as communication devices (e.g., production, circulation).	
	I	Gas Lift Valve	Describe the primary function of side pocket mandrels, either with a working valve (gas lift, circulation and chemical injection) or with a dummy valve installed.	

2.8 Procedures

Module Name: 2.8 Procedures				
Sub-Modules	AIM	Learning Topics	Learning Objectives and Assessment Guidelines	
Sub-Modules		The instructor will impart knowledge on:	The attendee will be able to:	
	М	Return flow sensor	Explain the purpose for setting flow sensor levels.	
Set/Check Alarm Limits	Α	H ₂ S and flammable/explosive gas sensors	Describe the purpose of H ₂ S and explosive mixture gas sensors.	
	Α	n ₂ 5 and naminable/explosive gas sensors	Identify the locations of H ₂ S and explosive mixture gas sensors.	
Shut-in	M	Non-shearable or Non-sealable equipment	Explain the well shut-in complications when non-shearable or non-sealable equipment is across the Well Control Stack (e.g., sand screens, cables, control lines, Bottom Hole Assembly (BHA), packers, gas lift mandrels, and tubing hangers).	
	M	across the Well Control Stack	Explain the importance of having an emergency procedure to address non-shearable and non-sealable elements across the Well Control Stack (i.e., tapered strings, gravel pack screens, gas lift mandrels, slotted liners, packers).	
	M	Roles and Responsibilities	Explain the importance of the crew knowing their specific well control responsibilities related to detection, well shut-in, and control.	
	M	Annular	Identify the valves/BOP equipment to be closed to establish a shut-in at the BOP with the use of flow line and trip tank (if applicable) to monitor.	
Verification of Shut-in	I	Wellhead/BOP/Xmas tree	Identify the valves/BOP equipment to be closed to establish a shut-in (e.g. Casing valve, Crown, wing, master valves).	
	l	Manifold	Identify the valves/BOP equipment to be closed to establish a shut-in (Manifold valves (standpipe/rig floor), Choke(s) (manual and/or remote).	
Monitoring and Recording During Shut-in	I	BOP Stack/Wellhead Choke and Kill Lines, Manifolds, Riser Spool, Accumulator Hoses and Connections	Explain the importance of regular intervals of visual checks for leaks.	
	M	Accumulator	Identify what needs to be monitored for integrity (e.g., check accumulator and manifold pressure, valve line up, and check status of power sources).	
Stripping operations	l I	Importance of strip/trip tank and line up	Explain the importance of a strip/trip tank. Demonstrate valve line up to trip tank.	

Module Name: 2.8 Procedures				
Sub-Modules	AIM	Learning Topics	Learning Objectives and Assessment Guidelines	
Sub-iviodules	Alivi	The instructor will impart knowledge on:	The attendee will be able to:	
	ı	Stripping procedure for BOP	Describe the purpose and procedure for stripping operations (with and	
	Į į	Stripping procedure for BOP	without volumetric control).	
	,	Massurament of valumes blad from the well	Explain the purpose and importance of using a bleed chart, with or	
	ı	Measurement of volumes bled from the well	without gas migration.	
	М	Calculations relating volumes and pressure to		
		be bled for a given number of tubing or	Perform calculations for bleed volumes or pressures as method requires.	
		workstring stands run in the hole		
	۸	Stripping with or without volumetric control	Describe possible situations where stripping with or without volumetric	
	Α	Stripping with or without volumetric control	control is important.	
	I	Verification prior to well entry	Identify well conditions and equipment that need to be verified prior to	
Preparing for Well Entry			well entry (e.g., equipment in the well, equipment ratings, type of fluid	
			and fluid level, restrictions, and maximum anticipated well head	
			pressure).	

2.9 Snubbing Equipment

Module Name: 2.9 Snubbing Equipment				
Sub-Modules	AIM	Learning Topics	Learning Objectives and Assessment Guidelines	
Sub-Modules	Allvi	The instructor will impart knowledge on:	The attendee will be able to:	
Snubbing Equipment	I	Types of snubbing unit: a. Stand-alone	Identify and describe stand-alone snubbing units: • Jack based snubbing unit • Short stroke • Long stroke • Hydraulic Drilling Unit	
	I	b. Rig Assist (Space Saver)	 Identify and describe a rig assist snubbing unit: Conventional space saver Mini space saver (remotely operated) Mechanical 	
Snubbing Barriers	М	Hierarchy of barriers	Identify internal (inside the tubulars) barriers (e.g., primary, secondary).	

WSP-02-WS-SN-EO Revision 0 Page 20 of 26 Created: 17 August 2017

Module Name: 2.9 Snubbing Equipment				
Sub-Modules	AIM	Learning Topics	Learning Objectives and Assessment Guidelines	
Sub-iviodules	Allvi	The instructor will impart knowledge on:	The attendee will be able to:	
	М		Identify external (annular) barriers (e.g., primary, secondary).	
	М		Explain how to maintain barrier(s) when changing a sealing element	
			during intervention and give examples of barriers.	
Stringer Assemblies	1	Sealing elements	Identify different types of sealing elements (e.g., stripping annular, ram type).	
Stripper Assemblies	I		Identify critical seals that have the potential to fail through wear and explain why they need to be replaced.	
	М	Annular	Describe equipment limitations (e.g., rule of thumb 2,000 psi surface pressure).	
	М		Describe operating principles and limitations of stripping rams.	
Dynamic Stripping BOPs (Main Stripping Stack)	М	Stripping rams	Describe closing and operating sequences to strip and/or snub pipe into the well.	
	1		Describe components that may be well pressure assisted to affect a seal on closure.	
	I	Equalizing Loop and Blood off Line	Explain what equalizing loops and bleed-off lines are.	
	I	Equalizing Loop and Bleed-off Line	Explain the purpose of using the equalizing loop and bleed-off line.	
	М	Safety Ram	Describe operating principles and limitations of safety rams.	

2.10 Well Kill in Preparation of Well Intervention

Module Name: 2.10 Well Kill in Preparation of Well Intervention				
Sub-Modules	AIM	Learning Topics	Learning Objectives and Assessment Guidelines	
Sub-iviodules		The instructor will impart knowledge on:	The attendee will be able to:	
	I	Live Well intervention (without killing the well):	Identify the objectives of well intervention well control techniques in a live well where well is allowed to flow.	
Objective of Well Control Techniques	I	 Relies on pressure containment through surface well control equipment 	Identify the objectives of well intervention well control techniques in a live well where well is not allowed to flow.	
	I	Dead Well intervention (killing the well): a. Circulate formation fluid out of	Identify the objectives of circulating formation fluid out of the well as a well control/well intervention technique.	

WSP-02-WS-SN-EO Revision 0

Page 21 of 26 Created: 17 August 2017

Module Name: 2.10 Well Kill in Preparation of Well Intervention				
Sub-Modules	AIM	Learning Topics	Learning Objectives and Assessment Guidelines	
Sub-iviodules	Alivi	The instructor will impart knowledge on:	The attendee will be able to:	
	I	wellbore or bullhead fluid back into formation	Identify the objectives of displacing formation fluid back into formation as a well control/well intervention technique.	
	I	 b. Establish hydrostatic well control c. Avoid excessive surface and downhole pressures so as not to induce an underground blowout or lose kill fluids to formation 	Identify the objectives of reestablishing hydrostatic control.	
	I		Identify well intervention techniques which may induce downhole fracturing and fluid loss.	

2.11 Special Situations

Module Name: 2.11 Special Situations			
Sub-Modules	AIM	Learning Topics	Learning Objectives and Assessment Guidelines
Sub-iviouules		The instructor will impart knowledge on:	The attendee will be able to:
Blockages and Trapped	I	Effect of blockages in retaining trapped	Identify types of blockages (i.e., sand bridges, paraffin, tubing plugs).
Pressure in Tubing/Wellbore	I	pressure	Identify potential well control complications with trapping pressure below blockages.
Blockages and Restricted Access in Tubing/Wellbore	А	Effect of blockages in impeding the ability to run tool string in or out of the wellbore	Describe where paraffin / asphaltenes / scaling is encountered and problems caused (i.e., commonly found in older oil producing wells; prevent tools from being run in to and out of the hole; plug up valves and surface equipment).
	I	Effect of Hydrates while Circulating	Define hydrates.
Hydrates	I		Explain how hydrates can complicate well control.
	I		Identify preventive measures to inhibit hydrate formation.
H₂S Considerations	I	Effect of H₂S on Well Control Methodology	Define H ₂ S and equipment limitations based on H ₂ S concentration (e.g., 0.00011-0.00033 ppm is typical background concentration).
	I		Describe additional procedures, precaution and supplemental safety equipment necessary, fluid scavengers, inhibitors while operating in an H ₂ S environment.

Module Name: 2.11 Special Situations			
Sub-Modules	AIDA	Learning Topics	Learning Objectives and Assessment Guidelines
Sub-iviodules	AIM	The instructor will impart knowledge on:	The attendee will be able to:
			Describe equipment addition, limitations, modification or replacement
	I		necessary to work in an H ₂ S environment (i.e., tubular or wireline
			embrittlement and seals).
	I		Explain safety considerations on safely bringing H₂S to the surface.
Operations with Specific	М	Pressure Calculation Exceeding MASP	Describe and discuss conditions where pressure calculations exceed
Well Control Concerns	171	Tressure calculation Exceeding WASI	MASP (e.g., perforating, fracturing, energized fluids).
Complication with		Pressure Limits Created by Hydraulic	Describe or discuss how MASP can be exceeded during well intervention
Hydraulic Fracturing	М	Fracturing Operations	operations being influenced by nearby hydraulic fracturing operations
Operations		Tractaining Operations	(e.g., SIMOPS).
	I		Describe when, where, and why a guide ram is used.
Rig-Up	I	Special BOP Equipment	Identify special situations that would use guide tubes in a BOP stack.
B ob	ı	Special Bot Equipment	Identify special situations when a telescoping tubing guide would be used
	·		in the jack.
	ı	Encountering Unexpected Pressure	Discuss actions to take when encountering unexpected pressure and
			what are the causes (e.g., unexpected increase in pressure, pipe buckling,
			piston effect, tri-axial pipe loading).
	M		Explain preventative measures to take to prevent slip bowl failures.
	М		Given a scenario, explain the potential impact of slip bowl failure on the
	14.	Slip bowl failure	immediate operation.
	М		Explain or demonstrate the action to be taken in the event of a slip bowl
Planned Responses to			failure.
Anticipated Well Control	М		Explain emergency measures to take in relation to power unit or hydraulic
Scenarios		Power unit or hydraulic circuit failure while	circuit failure.
		conducting snubbing operations	Discuss the potential impact of power unit or hydraulic circuit failure on
	I	Some desting stranging operations	the snubbing operation (e.g., securing the pipe in slip bowls, securing
			suspended loads, pipe handling).
	М	Stripping annular element failure	Explain or demonstrate the action to be taken in the event of stripping
			annular element failures.
	Α	Leak below BOP stack	Explain or describe the action to be taken in the event of a leak below
	.,		BOP stack (internal and external).

WSP-02-WS-SN-EO Revision 0

Page 23 of 26 Created: 17 August 2017

Module Name: 2.11 Spe	Iodule Name: 2.11 Special Situations			
Sub-Modules	AIM	Learning Topics	Learning Objectives and Assessment Guidelines	
Sub-iviodules	Alivi	The instructor will impart knowledge on:	The attendee will be able to:	
	M	Pressure at surface inside the work string	Explain or describe the action(s) to be taken (stab-in safety valve, blind shear, pump) in the event of pressure at the surface inside the work string (e.g., hole in tubular; downhole check valve failure).	
	M	Leak in the stripper BOP ram	Explain the action to take in the event of a leak in the stripper BOP ram.	
	I		Define tubular buckling.	
	I	- Buckling of tubulars	Describe where tubular buckling may occur (e.g., supported and unsupported).	
	I		Identify the preventive factors that are designed to avoid the impact of tubular buckling.	
	1		Explain the action(s) to take to make the operations safe while maintaining control of the well during buckling of string (e.g., stroke length).	
			Explain the operational factors that can impact buckling of string in BOP stack on the immediate operation.	
	M	Parting of string	Explain the action to take to make the operation safe while maintaining control of the well should the string part causing a load reversal.	
	I		Explain the impact of parting of string on the immediate operation.	

2.12 Organizing a Well Control Operation

Module Name: 2.12 Organizing a Well Control Operation			
Sub-Modules AIM	AIDA	Learning Topics	Learning Objectives and Assessment Guidelines
	Allvi	The instructor will impart knowledge on:	The attendee will be able to:
Personnel Assignments	М	Roles and Responsibilities	Describe required personnel assignments during a well control operation.
Pre-Recorded Information	I	Pre-recorded information	Describe locations of pre-recorded information, collection process, and where supervisor will keep well documentation.
Plan Responses to Anticipated Well Control Scenarios	I	Emergency Response Plan	Explain the importance of the emergency response plan for all well operations.

Module Name: 2.12 Organizing a Well Control Operation				
Sub-Modules	AIM	Learning Topics	Learning Objectives and Assessment Guidelines	
3ub-iviouules	Allvi	The instructor will impart knowledge on:	The attendee will be able to:	
Communications Responsibilities	I	Planning and outlining routine well control	Describe the lines of communication and the roles of personnel, including the importance of pre-job on site planning meetings and tour safety meetings.	
	I	responsibilities	Describe how equipment and personnel would be organized to recover a situation, once the well is safely shut in.	

2.13 Testing

Module Name: 2.13 Testing				
Sub-Modules	AIM	Learning Topics	Learning Objectives and Assessment Guidelines	
Sub-Modules	Alivi	The instructor will impart knowledge on:	The attendee will be able to:	
	ı	Purpose	Explain the reason for pressure testing equipment for integrity upon rig-	
		'	up or when a system component is replaced, repaired, or decoupled.	
	М	Maximum safe working pressures of well control equipment	Identify the maximum safe working pressure for a given set of well	
Pressure and Function	171		control equipment.	
Tests			List reasons for de-rating the maximum safe working pressure of well	
	l		control equipment (e.g., temperature, erosion, corrosion).	
	I	Low Pressure and High Pressure Testing	Discuss the importance of low pressure testing in advance of high	
			pressure testing (e.g., API 53ST and 30 CFR 250.617).	
	1	Requirements for pressure testing	Given details of specific equipment and operation, describe pressure	
BOP Testing			testing procedures.	
J	I	Performing pressure tests	Demonstrate procedures to pressure test a valve or BOP function.	
Testing of Completion Equipment	I	Packers	Discuss the negative pressure test of a packer.	
	I	Deep-set Plug	Discuss the pressure test of a deep-set plug.	

2.14 Government, Industry and Company Rules, Order and Policies

Module Name: 2.14 Government, Industry and Company Rules, Orders and Policies				
Sub-Modules	AIM	Learning Topics	Learning Objectives and Assessment Guidelines	
Sub-Modules	Allvi	The instructor will impart knowledge on:	The attendee will be able to:	
Incorporate by Reference	А	API and ISO recommended practices, standards and bulletins pertaining to well control	Describe or identify appropriate industry standard or recommended practice pertaining to job being completed.	
	Α	Regional and/or local regulations where required	Describe or identify appropriate regional government regulations pertaining to job being completed.	
	Α	Company/operator specific requirements where required	Describe or identify appropriate company or operator specific requirements pertaining to job being completed.	

2.15 Ancillary Considerations

Module Name: 2.15 Ancillary Considerations			
Sub-Modules	AIM	Learning Topics	Learning Objectives and Assessment Guidelines
Sub-iviodules		The instructor will impart knowledge on:	The attendee will be able to:
Gas Detection	Α	Purpose and location	Describe the functions of gas detectors.
Gas Detection	Α		Identify the location of gas detectors.
	Α	Purpose and location	Describe the functions of fluid-gas separators.
Fluid-Gas Separators	Α	Operating parameters	Explain the operating parameters (e.g., maximum operating pressure,
Tidiu-das Separators			vent line diameter, u-tube height; and potential dangers and action to
			take if overloaded).
Wellhead Control Panel		Operation of Control Danel	Describe the function of the emergency shutdown (ESD) on the control
	1	Operation of Control Panel	panel and accumulator requirements.